
SECURITY CLASSIFiCATION OF THIS DAGEm
Form Approved

REPORT DOCUMENTATION PAGE 0MB No 0704-0188

b RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVALABILITY OF REPORT

A DA215 Approved fOr pu blic release;distribution- unlimited.

-. nr'rVjviNU VQANIlZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

- ."1,0 %R .TI i 1 '. ()

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORNG ORGANIZATION

Michigan State UniversityI (If applicable)

Electrical and Mechanical AFOSR
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Engineering Dept BLDG 410
East Lansing, Mich 48824 BAFB DC 20332-6448

Ba. NAME OF FUNDING, SPONSORING |8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AFOSR AFOSR-75-2842
8"c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
BLDG 410 PROGRAM PROJECT TASK WORK ,NiT
BAFB DC 20332-6448 ELEMENT NO. NO. NO ACCESS1ON NO

61102F 2303 B1
11. TITLE (Include Security Classification)
A STATISTICAL MODEL FOR HYDROGEN HALIDE PRODUCT DISTRIBUTIONS USING INFORIATIO
THEORY

12. PERSONAL AUTHOR(S)
D.H. Stone and R.L. Kerber
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final I FROM TO January 1980 41

16- SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and iden;fy by block number)

DTICF t.EI-:Cr'ED

DEC 0 11989

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
C2UNCLASSIFIED/UNLIMITED C3 SAME AS RPT [ OTIC USERS unclassfie d

22a NAME OF RESPONSIBLE iNDVDUAL 22b 7ELEP 4ONE (include Are& Code) 22c OFFICE SYVBO.
1 7(7-4ql M Tr

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSICICAT!ON OF - S

V



A Statistical Model for Hydroaen Halide Pr"c. Distributions

Using information Theory*

D. H. Stone and R. L. Ferber
Michigan State University
East Lansing, MI 48824

-Chemical laser modeling is dependent on The reaction rate

coefficients available from both experiment and theory. A

statistical model has been developed to correlate the relative

rate coefficients for the laser pumpino re.cticns:

(I) F + H 2  - HF(v,J) + H, (II) F + D DF(',J) + D,2 2
(III) H - F HF(v,J) t- F, (IV) D + - 7:1 'T) + F,

2 2
(V) H + C1,_ HCL(v,J) + CL, (VI) D + C1. DC1.(v,J) + C1.

4 2
(VII) 1 + Br HBr v.,J) -t Br, and (VIII) D - Er X DBr(v,j) Er.2 2
The detailed product distributions for Reactions \IV) and (VIII)

are generatcd by the models these distributions have not yet

been exoerimentally determined. -The model uses surprisal

analysis to relate the product rotational distributions for

each -eaction by considering each vibration~al level separately.

Usinc Polanvi's exrerimental data with FRRi{C) "rior rates results

in rotational surprisals which are approximately cuadratic in

form and vary in width with vibrational level. A model was

developed and applied to Reactions (III) and (VII) which assumes

a reaction complex interaction among the product vibrational

levels. An adjusted number of product states made available

to each level by the interaction is then computed. The logarithm

of this number is related to the width (or entropy) of each

rotational surprisal distribution and a correlation is observed.

The model also predicts the degree to which the surprisals skew

toward high rotational levels. -rhe model results coupled with

the observed vibrational distributions favorably reproduce the

rotational distributions for Reactions (TIT) and (VII). Assuming

an isotopic independence for some parameters between Reactions

(III) and (IV) and between (VII) and (VIII) , the model can

generate the full vibrotational distributiorns for (IV) c-nd (VIII)

from a small set of input parameters.

*This work was supported by AFOSR Grant .'o. 75-2842 and :¢)F

Grant No. ENG 76-OV733.



I. INTRODUCTION

Chemical laser modeling is dependent on the reaction rate

coefficients available from both experiment and theory. A

comprehensive computer model must incorporate potentially

hundreds of rates for the various pumping and relaxation

mechanisms, in order to accurately predict laser performance.

Available reaction rate data for HF chemical lasers is taken

from selected experiments and trajectory calculations as re-

viewed by Cohen and Bott in references i and 2. Not all

reaction rates of interest in the HF laser have been studied

and signifirfkL Ifce .1Li es are present in many that are known.

Techniques are needed to expand the data base from a few

accurately measured reczlon rates to a complete rate set. In

this paper, we apply th2 information - theoretic or "surprisal"

approach to reaction proauct distributions as developed by

Bernstein, Levine, and ben-Shaul (references 3-5) to the

experimental distributions obtained by Polanyi, Woodall, and

Sloan (references 6-7) for the pumping reactions

F + H - HF(v,J) + H (I)

F i- D 2  DF(v,J) + D (II)

H + F 2  HF(v,J) + F (TII)

Our objectives are to develop a model which correlates tne

vibrotational product 'istributions for these reactions in order

to describe the distriLutions in ter:-.s of a small set of para-

meters, and to predict the full vibrotational distribution for
the reaction

D F2  - DF(v,J) + F (IV)

We also apply the model to the experimental distributions

obtained by Anlau, et. al, (reference 8) for the reactions

H + C1 HCl(v,J) + Cl (V)

D +- Cl 2 - DCl(v,J) + Cl --. (VI)

H + BR2  f{Br(v,J) - r (VII) i or

• .I I I I I I I II I i2



The model is then uscd to prodict -- .rodu ( i strieucnr. for

D + Br, - DBr(\, ! Br (VT

This reaction product distribution has also not been studied ex-

perimentally.

The model incor~oorates well-docunented reacticn complex

dynamics characteristic of Reactions (I)-(VIII) along with ideas

similar to statistical collision theory as reviewed in reference

9. The surorisal technique is used to make the product distri-

butions more tractable. Wc now c-;.: the surzr:sal approach

and apply it to each reaction.

II. tNFORkT IO' cO ....... OF AN EXPE TVENTAI DT -7RI D'i ION

From ti- dev, cment :n reference 5 .;e cosi:er the

distribution of outcomes in an exoeri:ent which consists of a

large number of repetitions, N, of the same event, %,ith r possible

outcomes. The probability of the ith outcome is Kef:ned as

= NiIN, the fraction of times that we observe the ith outcome.

The information content of the distribution is then given as:

P.I 9. (i)

The information attains its smallest value (zero) when

P. 1/n so that all the possible outcomes artse with equal

probabi l i ty.

The entropy of the distribution is defined by

Ti - P n P. (2)

where the thermodynamic entropy S = RH, and R is the -as constant.

Then

n(n) - H (3)

Both the information and entropy are nonnt-iati-.e nur:bers.
The prior distribution, P, of :.o ,luct stats (outcomes)

is given as the one which corresponids to T = 0. Th,:s, for simple

microcanonical systems,

P (4a)

n



or, if the states are grouped closely _.ouch to dc: :i B uensitv

of states function :(E) , of the total energy E, we have,

Po = 1/2 (E) 4b)

Using (4) in (1) , and further defining the "surpr:sal"

I i  : - n{P,./P?} 5;

we have

I = - P. 1. (6)

We can see that the infLormation is the necative average value

of the surprisal, a auantitv which from infcrmaton theory

is the difference cf the self-informat:Lon of the e::ceritec tal

distribution (-"nP. and the self-infor-ati-n no fne microcanonlca-

distribution (-?nP 7

Since P reorsents some combination of stat:=:tcs and1
dynamics in an .xpermenz and iO s a purely statistical quantity,

the form of the se.rnrisal should then give us relevant dynamical

information.

III. SURPRISA, AX I S

To characterize the pumping distributions we now calculate

the form of the surcrisals. The experimental rates are those of

references 6-7 and we use the RRHO approximaticn to generate simple

baseline statisticiL ares P0 . We emplov the dimensionless energies

f fvr and T which correspond to the fractional product energies

in rotation, vibration, and translation, respectively. Thus we

must always have

+ 4T (7)

The {f} are calc-i.Ltd according to the total ,.rnergies with the

constraint

H 0 + E 2RRT + RT (8)
a2

where the hr-at of :tion, -'H, is added to the relative

reactant translit 1,),'. energy, E + 2 RT, plus -in idditional RT

for the internal . ,, of the incident diatomic.



Rather than worklna directly .ith the rotatonal surorisals,

we now compute and analyze the translational surprisals, thereby,

considerirg the vibrational and rozational cecrees Of freedom as

components of the internal molecular motion such that

fT I- (f + fR) - 1 f int" (9)

The translational surprisals for different vacrarional levels

are compared by normalizing P and P0 as though each product

vibrational level comprised a separate experiment.

Thus, we constrain

- , (10)

where the Drobabi_'--ties are <::iven :_cr . ach zre:ruc n transatIonaI

energy, given a vibrational level v. The :r ior "ates are

computed accordine: to reference 5:

p12 ' (12

where i is determined to satisfy the normalizari-n by selecting

those values of fT which correspond to experimeniailv observed

J-levels. With this normalization method, we can anaivze the

deviation from the statistical rate within each :-level without

concern for the weighting effects of the vihrational distribution.

The translational surprisals for Reactions (I), (II), (III),

M), (VI), and (VII' are shown in Figures 1-2. 7t Is important

to note that the curves are most narrow for the highest ob-

served vibrational levels and broaden for lower levels. In

general, the surprisals achieve maximum width in the intermediate

vibrational levels. We also note the lack of symmetry in the

surprisals. Particularly for Reactions (II) and (VII) the

surprisals skew toward the high rotational (low translational)

levels, with respect to the most probable J-lcl, denoted J.

We use J for the rotational level at which the surc:-isal, I,

is a minimum. The value of J is usually, but not necessarily,

equal to that rotational level within a v7iby .tirr,-i manifold

with the greatest jpopulation.

We quantify the full-width of each surpri c.ii by measuring



arbitraril it I = I. , where P ,'2.. Wc s 0 , -: '1- -I

that for Reactions (I) and (III) the full-widths are srcatest

in the middle vibrational levels. Accordino to the model
described in the next section, the Reaction (II) a-imum

full width should also occur in a middle vibrational level;

we justify this identification later.

IV. A SEMI-EMPIRICAL MODEL TO CORRELATE ROTATIONAL SURPRISAL
FUNCTIONS.

As a result of the normalization, all surorisals for a

given reaction have roughly equivalent peak maqnitudes. The

significant variatins are in the full-widths of the curves

at some arbitrary value of , and in the decree c: skewness.

We can directly ralat,? the surnrisal widths to the entropy of

the distribution. Clarlv, as the wdth shrinKSs -o a single

J-level, we have a minimum of entropy (or a maximum of information),

i.e., we can make -he best possible rotational level prediction

for an experiment. As the surprisal broadens ultimately to a

horizontal line such that I = 0, we have P = P0 and thus a

maximum of entropy since the result is simply microcanonical.

In a future paper, we ,,uantify the relationship of the surprisal

widths to the classical "information" as defined in Eq. 6, and

show how the choice of rate normalization is crucial to tha

use of information -as a predictive tool.

We now construct a model to interpret the surprisal results

based on reaction complex dynamics as described in references

10-14. Trajectory calculations for three body exothermic re-

autions of the tye A B C I AB + C from reference 10 indicate

that attractive potential energy surfaces facilitate multiple

encounters among the Lirce atoms before separation. A limit

is eventually reac... where the dissociaticn of the complex is

governed Ly st~tstlc ] considerat ions, as -. :plored by J. C.

Light and cc-workers 1n references 15-18. Tn cases where the

potential energy surfaces exhibit a mixture of attractive and

repulsive charact<!r, we find useful both statistical and dy-

namical conc(pts.



The net effect of seconcary oncounters witn ze -ectic1.

complex is a broadening of the enerv and an ular is:ribut:ons,

as proposed in references 10-14. The two orimary types of n-

counters are termed "clouting" and "clutchinq." Clouting in-

volves a repulsive encounter between A and C .ith conseauent

reduction in the angular velocity of AB Clutching secondarv

encounters are also known as "migratory'" encounters. The

probability of "migration" increases with the magnitude of the

attractive part of the potential enercy surface, A . Therefore,

for example, we would expect mic:ratior, to piay a :reater role

in Reactions (III) and (VII) where A -45% than n Peaction (V)

where A -25% (rererences 7 and 19).

Afror inrect cited in referonc-s 0-'4 an observed

decrease in the mean nroduct vibra tional enerq., - b>, wi-h

increasing collision complexity resulttnc f:rcm ncreasina

The result is conversion of vibrational energy ro rotation and

translation. Product rctational energy is narrc uiarly enhanced

for migratory encounters.

Dramatic migratcry effects for the reactions 7: - ICI - C I,

H + ClBr - (OIC + Br, HBr + Cl) resulting in bimodal rotational

distributions within each product vibrational level are described

in reference 13. Applying these concepts to Reactions (I)-kVIII),

we anticipate, and in fact, observe both broacened and skewed

rotational distributions with the most attractive potential

energy surfaces exhibiting the largest asymmetry toward hich

rotational levels.

A model which combines these dynamical idcras ,..itn statistic_=

must predict the vibrational dependence of bc r. the surprisal

full-widths and the degree of asymmetry or ske-wness. A schematic

of the model is shown in Figure 3. For pedogiouical purposes

Reaction (I) is iscd s3ince only three v-Leveis are involved.

As the reaction Legins, a particular :oou.ct -ibrational

energy becomes most probable depe_ nding on a f:iven rajectory

through the potential energy surface. Fhis v:Lra ional energy

may be quickly transformed into rotational nd ":; -:.sational

energy via clouting or clutching secondary O,'n22'Tntrs followed

by repulsive energy release.



in or-er to modc chese interacrenc we t.ICn-ZC_ 2:2. t h

energy redistribution in vibration, rotatio, :- .

(V, R, and -) can be described L% a red~striru-: of V and

states within the fully formed molecule--HF for ixamr in

Reactions (I) and (III). Use of the rr.:duct V and R states is

especially reasonable in Reactions (I,-(VIli in which The

"light-atom anomaly" results in an "AB" bond belng effectrveiy

formed before the "C" aom becomes invoived. This allows use

of the unperturbed product states as an appro:x:mation to the

time-dependent :-eact::n cemo:lex wave funct:cns.

For the s.cifc case shown -n F1 :ure 3e :eu that the

.=1 populatin will :esult,,artl, fron :ut cu :n7t~all.

choosing the I ev :rIiucr :evel and a: t1iv . :.-Icules ch' s:n

levels v= a n :nder,::o n tn< ::or':: sr, cut-on

process. The :e-att'ut-n oa rs LS :en :: :rcm Vlbnt:

resonantly to rotat:c-_ .n and then . part t o tr:rs a ion. Th is

would seem to follow the order taken Ln the c Ie:. A direct

path from vibration to a mixture of rotation an4 translation

was also tested with zliqnificantlv inferior results.

The contributis'n from the higher V.-levels :must be ..eihted

according to the initial transition state vibratronal

probability, P(ER '_ , and the amount of rotational energy, 'E,

converted into product translational energy. The term EVR

dnotes the enu2r}y resonance among the selected V-R states.

If the initial populations are taken as orouped witii equally

small. energy intervals .., the redistribution process makes

these sttes availdLblt to Lower V-levels. Thp natural logarithm

of the number of wo'. :hted available states then r-orresoonds to

the entropy, or wjith, of the givcn distribut:on.

We take P(.V_) t:,ual to the final vibrational population,

P(v). We find tha: ilthouch the model predicts a large

difference bet wn .e Thso]ute reaction comniex and final

vibrational ?o:ul~tiens, the relative (normal zed) populations

are almost unchanjed. We see in fact a small relative

population shiut to Lo'er v-levels, but the i ifc-rences are

actually within the -:.:T,(rimental uncertainties of the vibrational



distrbut Ior Ea C Srt ,eL is ;Ks Y12.te

which gi the p r ob lb iIi tv 17o)r caat 1c n :r

state -)the por robabljrt-, ~Stt,~

distance ,E away. The adju,-stale parawreter i" s a me3s'"re

of the maanitude ofto enerc- cy srourr

given reaction. It is ana icaous to the rc r o iTecn

stant "C,. as c-iven by Polanyv ano- Woodall in roe-rence 210 fcr

HF collisional rotational relaxation:

where E - o. Loo : tna I Iev e 1 '.~h n --h e n

t erv a I e: r e 0" n'-I -ct or, :o Vnx. _,-n rC Istrio, '

i s ,..e icu:ht i t -:ce.r~ 1 C'.' 1

:CrrczI.- eh I s

giv es ua n a a ;ust :u r s sta to c, ,nicn --t>Lue o che

rotational uoi:: <dho antronv,, : th 3. :hu i

Identifyin-, th-.rr ,al;i-"th with the ofa>.ca the

number of ,oiihtc-d iv.-i~al states ,ivos

width (v) I=CIn,.'(v) 1

w h ere C i s a Pons:t rnee ie n t : f.

V. APP LiT TjI N Pil PMD

The )rcic .S rmoton 'O:c ~-.n s55

4 for opt 1:,,im :.:,- Lv' t: ch :'tn

t he Ia r, -st ,; i, t' 1i ~ 1 - st e %'e 7 und

in fact a -r,:oth d C Sn ii iI' onLp t ' Cuch

that for i :ien '10 >al, as ,Iuras.

For iar~e >iie o0 s 0

This ,,ell ''~or 'r -rice~~ 1he's

predictin , i i str -I, Uo tr f >:



We select an ener'':y interval, ( see 3i3urc ) , aprtX--

mately equal to twice The smallest surprisal width and then vary the

parameter '. (In practice the specific choice of interval has

little effect on the results as long as it is reasonably small.'

For small a, we find that high J-levels are not contributing

enough to the rotational width, while at large , the ccntrithut:in

is too great. The optimum value of a is determined by locatina

the minimum in the standard deviation function -('j) where:

N2

p)redicted oLserved

In Reaction (7- for examle, using cata for the first five

vibrational evels results in a oronounced .inimum for

at c 14. T'cr Rct' on •J) althouc;- h-e-. are % wiarhs to

correlate at onyv , I and v = 2, we ne .n cptmum z = 6.

Here we used the v 3 surprisal width as nail the enerav iater'.a".

The Reaction (IT' rotational distribution for v=2 ..;as

determined y Polanyf (r;-ference 6) with .onsiderablv less

accuracy thar. for the v = 3 and v = 4 levels. Furthermore,

the v 1 distrioution, as estimated since he observed no

detectable emission in that band. If we -rclv our techniuues to

Reaction (I) , assuirig 6, we can then qenerate a rotational

distribution for the first vibrational level as shown in

Fig. 5. The data ,,s generated using arc:r:etfers from the

other vibrational iL-vels. This results in large entropy

rotational 'Iistributrons in the middle v-levels for Reaction

(II) as we :ave already observed for Reactions (I) and

(III) . v show r,= : t for Reactions (1) and (II) in

Table II.

The --ir ii-mutur "," is taken physically as the strength of

interaction r -.- :,, 7eco:-dary encounter:- in 'he model. Lar"e

values of , .t< hiKr probabilities icr :,distribution

over si :nt ' , E. T .7 'ht is dcpendnt

on the nt ial energy surfaces and t< mcrosccnic reaction

initial , i .i t ions. Thus L may well be It: rT-, :'v tly isotcOJc-

ally inn : nunt, :a-tiuularlv bet',,,,.cn [,,'tlons (II) and (:V)



and lctwcn (VII) anc 1iTI) We note tat tnp ot_,tmu- -'aIUe'

of both i and (. for Peactions (V) and (VI) are ver,, close, in-

dicating tha isotopic independence of These parumters is a

reasonable assumption. Using this assumption we can cenerate

the surprisal widths predicted by the model for reactions (IV)

and (Viii) as shown in Figure 6. It is not surprising that the

widths for Reactions (IV) and (VIII) generally exceed those of

Re, tions (III) and (VII) since the deuterium prcduct energy

levels are closer zogether, Ca'il~tating enerc level mixi.

As an almost cnen,.nz check on the model, we now oredict

the dearee of asymmetry for rotatonal su~rorsals in reactions

characterized by attractie surfaces. We re:ect rotational

asymmeucry in :nizratorv encounters wh. Th ma: enhance iuroduct

rotation as opposed to rerulsive, cloutinq nccunters which

tend to restrict orodtt rotational energy. 7f we now comnare

the probtbility of 2nergy, tranr. fer to a low J-level (at say

I = xn2) with that of a high J-level (also .t £ n2) we

obtain a , iantitatlve measure of the asvmer\', i.e., a com-

parison of the "ha l-.idths" of the distributtio.s centered

about eacn J.

Therefore consider an intermediate state with energy E0
which transforms within a v-level either to a low J-level of

energy E1 , or to a high J-level of energy E,. 7he ratio of

these two nrobaoilitios according to a coliisienal relaxation

analogy is then

P(EoE_ e- (E0 -E 1 ) /KT (E -E,) 'JT
P(Eo .E2l ) e - E 2) ,iKT-

(17

If E - E. s given is the energy width of a trnslational sur-
2 1

prisal, then we can pr.°,dict the ratio of "nalf-,.;idths" as

l_ : -(En-EI)/ kT (i'

where:

= f T(Tz.in2 at low J) - f- (J) ]9 1)

'2 f T (, ) - Cf1 ( I n 2 I t h i ?h ,J) e )T T

I • | I



E T (I= n? at low J) (19c)I T

E = T (I=.n72 at ri lh J) (19d'2 -T.chJ

+ 2 = E 2 - E (19e)

A comparison of Equation 18 with the actual hal-widths for

Reaction (III) is shown in Figure 7. We see that for tne same

values of a we obtain good predictions for both the half-widths

and the full-widths. The same technique was applied to Reaction

(VII) with less cuantitative success due primarily to the sim-

plicity behind cquations (17)-(19) in estimating redistribution

probabilities. The .--odei does exhilbit cualinative success in

predicting Reacticn f,.I) asymmetry and ccul.- be :acde more

sophisticaed : a _ that our intent is to provide a simple

model for ccri-eating product distributions.

We now eivelop a simple algorithm to recenerate the

rate coefficints for Reaction (III) based on the model. Using

the translational zurutrisals we note that most of the curves

can be appro:ximated Lv a linear function for fT < fT (J)

and a quadratic _unction ror fT > fT (J) So for large fT1T T'
we find "A" such that

I - (J) = A[fT(I = n2) - f (J)V] (20)
r T

where I =-.n2 and f (J) is the value of fT at the maximum value

(peak) of [-1(f )]. The term f T(I = in2) is determined by

knowing that

. C n[? (21)1i 2

and
-1 2 , / KT (22)

Combining Equations 21 and 22 gives

1 (23)

and

2 - -(24)

Then for lar'e fT (s:1all f ) we have

f, T ;n2 at low J) fT (5j) (25)

, iT (25)I I



I(J) is determined ty observing that eacn :roduct rotational

distribution has total population rouqhly proporticnaI to the

width times the height of the distribution. Thus, 1w'e set

'yP (v)
P (J) (26)

where ' is fixed to make the largest value of P'J) for the

entire vibrotational distribution equal to unity. Now invertinc

Equation 5 and combining with Equation 12 we have for any value
of f T :~

ofP~f <viP0 (f )e 1- T/
T

where

<v) " (Jv)

with P as the ex. --mcal distributi.7-n -b:-v in refe-e-c -

The last two formulas are simply the invorsion ,f the -ormaiizatlon

method employed previouslv. For I(J) we :;cv. have:

I (J) :P(J) n(0P k29__() - . ) _ -,U 1  -(29

P v- (J)
For fiT^ f (J) we find the equation of a line through the

T^. T'-
points [fT(J), I(J)] and IfT(J)-Z%2, I = <n2]. Using the

linear and uuadratic forms for the surprlsa.s as functions of

f we can now generate the actual distribution P = P(f ) by

using Equation 27 for each selected value of fT"

Figure 8 compares with our semi-emeirical nodel uredictior

for the Reiction (1:7) rate coefficients w,.ith te ,:-ermental

data in terms or R, The model also 7ivs i,,,alitative acreument

with the Roeict ion ,':T) x:crimental dlta althuough the sie':1-

ty of the algorithn rosults in some cuantttive differences.

VI. RATE COEFFIC E: P PREDICTION FOE PEA(TIONb
(IV) and (VIii)

We now arpply the model with some _,dcdit onal ssumptions to

Reactions (IV) and VIII) for which, to the best of our knowl,

detailed experimental rate coefficients _,rc not -.ct availab:.

To develop the full vibrotational di,.t;tiuon we must nreo>'t

a vibrational pumping distribution, a ,mo-t :vr-!able J withir.



each v-level, and the form of the rotational surprisais for

each v-level. Berry has reported in reference 21 an isotopic

independence for the vibrational surprisals of Reactions (I)

and (II). The linearity of these surprisals indicates that

the distribution is characterized by just one moment, namely

the mean product vibrational energy. The vibrational surprisals

for Reactions (III) and (VII) are computed using the RRHO result

P (f V (1-f) 3/2 (30)

such that

P0 (f ( 1 (31)

The resultant surprisais are not entirely linFear, but are

regular enough so that if we assume an isotopic independence

we can predict 1(f~ )for the product DF and DBr molecular

vibrational levels. Then using the predicted values 1(v) we

find the vibrational distribution

P(v) < P 0 e 32)
v

where Kv is such that the largest value of P(v) is unity.

This normalization giving P(v) = 1 is the same used by

Polanyi in reference 7.

There is also reported (see reference 22) an isotopic in-

dependence for E R as a function of f between Reactions (I) and

(II). Assuming the same relationship between Reactions (III)

and (IV) and between (VII) and (VIII) we can predict J (v) for

Reactions 4V) and (VTII).

To predict the rotational surprisals according to the

model, we use the widths predicted in Figure 6, and the

same prescription as given in Section V for Reaction (III).

We further identify that only one rotational level beyond the

full-width is selected. The full vibrotational distributions

for Reactions (IV) and (VIII) thereby generated are shown in

Figures 9 nd 10.



VII. SUMMARY

A model was developed which combines statisticai idoas

with well-established reaction dynamics. The model describes

the features of experimental rotational distributions for six

reactions and predicts the full vibrotational distributions for

two reactions not yet determined experimentally. Future work

involves defining the relationships among arbitrary rotational

distributions and the classical "information" of a distribution

for a given reaction. We also hope to extend the ideas presented

here to collisional relaxation processes.



TABLE 1.. Translational Surprisal Full-Widths, !(f T at I=,n- 2

Reaction KI)

1 0.198

2 0.212

3 0.045

Reaction KUI

1 0.181

2 0.147

3 0.122

4 0.054

Reaction (III)

V

1 0.036

2 0. 048

3 0.065

4 0. 068

5 0. 064

6 0.068

7 0. 030

8 0.017



TABLE !I. Translational Surprisal Full-W&idths, ,, =7t := 2

Reaction (I)

V observed zi redcte

1 0.198 0.208

2 0.212 0.212

Reaction (II

V observed I nredicte- , :=6)

1 0.181 0.117

2 0.147 0.147

3 0. 122 0.131

The model predictions are compared with the observed data for

Reactions (I) and (1I). Note that the precise match for the

largest full-widths is simply due to the normalization of

equation (15).
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LIST OF FIGURES

Figure 1. Surprisals as functions of translational energy for

each of the experimentally observed product vibrational levels

ror Reactions (I)-(III). The surprisals were computed using

the normalization described in the text.

Figure 2. Translational surprisals for Reactions (V)-(VII).

Figure 3. Schematic for the model predicting surprisal widths.

An energy interval, ',, is chosen ccrresponding to the v = 3

surprisal width at the value I = in2. All of the energy levels

within f: , where f is the energy: of the v = 3 population
R R

maximum, define a group of states of approximately equal energy

EV. This c(rorpi of states includes thcse fallino within the

interval at lower vibrational levels. Accordino to the energy

redistribution mechanism described in the text, each rotationnl

distribution will include broadening effects due to the selected

states accessible to a given vibration level. Thus for the

reaction, the v = 2 level will have contributions from the v = 3

level, and the v = I level will have contributions from both

the v = 3 and v = 2 levels. Each selected rotational level is

weighted according to level degeneracy (2J+1) , population

P(E vR), and the rotational energy distanc2, 6E, from the level

to the rotational distribution center f

Figure 4. Predicted (^) and observed (0) values of the trans-

lational :surprisal widths as functions of the normalized vi-

brational energy, f The constant C is determined by equating

the maximum predicted and observed widths for each reaction.

.1e expect and observe the best results for -%iactions (III) and

(VII) where many vibrational levels are involved in the energy

redistribution mechanism which is the crux of the model.

Figure 5. The predicted v = I produ.ct -otitional distribution

for Reaction (II), using the technicues of the model.

Figure 6. The predicted translat:onal sur,-risal full-widths

for Peactions (IV, and (VIII) . The d ata is generated assuming

isotopic iniependence in the paraer-trs ", C, and f (f between



Reactions (III) and (IV) and between (VII) and (VIII).

Figure 7. The ratio of predicted surprisal "half-widths" (I)

compared with observed data (0) for Reaction (III). Data for

Reaction (VII) shows qualitative agreement, although quantita-

tive discrepancies arise due to the simplicity of characterizing

the rotational energy distance, 6E, as the difference of each

selected level energy and f Constructing a model using a

continuum value for 6E as the difference between each selected

level energy and weighted values of the product rotational dis-

tribution energies might improve cuantitative results, but would

also involve unwarranted complexity in an otherwise simple model.

Figure 8. Predicted () and experimental (0) product rotational

distributions for Reaction (III). Note that the results are

best in v-levels where the model accurately predicts the sur-

prisal full-widths. Reaction (VII) data exhibits aualitative

agreement although quantitative discrepancies arise due to the

simplicity of the model techniques, as alluded to in the caption

to Figure 7.

Figure 9. Predicted product distributions for Reaction (IV).

Figure 10. Predicted product distributions for Reaction (VIII).
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